In class, I have left some statements unexplained in proofs. As part of this assignment, you will prove some of them.

1. In the proof of Euler’s Criterion, I said when examining $\alpha^{(p-1)/2}$ that i must be even. Why is this true? (hint: an alternative definition of a primitive root is this: an integer α is a primitive root modulo n if $\phi(n)$ is the smallest possible positive integer l so that $g^l \equiv 1 \pmod{n}$. Given this definition, we can use the Division Algorithm to write $l = q \cdot \phi(n) + r$, and use the properties of primitive roots to show that $\phi(n) | l$).

2. In the proof of the proposition following Euler’s Criterion, I said that if $p \equiv 3 \pmod{4}$, and p is prime, then there is no solution to $x^2 \equiv -1 \pmod{p}$. Prove this (this is exercise 3.15 in Trappe & Washington; the hint there is to suppose that x exists, then raise both sides to the power $(p-1)/2$ and use Fermat’s Little Theorem).

3. (Trappe & Washington, 8.4) Let p be a prime and let α be an integer $\not\equiv 0 \pmod{\alpha}$. Let $h(x) \equiv \alpha^x \pmod{p}$. Explain why $h(x)$ is not a good cryptographic hash function.

4. (Trappe & Washington, 9.3) In the electronic coin system presented in class, the numbers g_1 and g_2 are powers of g, but the exponents are supposed to be hard to find. Suppose we take $g_1 = g_2$.

 (a) Show that if the Spender replaces r_1 and r_2 with r_1' and r_2' such that $r_1 + r_2 = r_1' + r_2'$, then the verification equations still work.

 (b) Show how the Spender can double spend without being identified.

5. (Trappe & Washington, 10.8) Suppose there are four people in a room, exactly one of whom is a foreign agent. The other three people have been given pairs corresponding to a Shamir secret sharing scheme in which any two people can determine the secret (i.e., $t = 2$). The foreign agent has randomly chosen a pair. The people and pairs are as follows. All the numbers are mod 11. Determine who the foreign agent is and what the message is.

 Alice: (1, 4) Bob: (3, 7)
 Carol: (5, 1) Dan: (7, 2)